Salivary Glands and Salvation

Khushal Khan (KMU-IPMS)

Saliva

- Saliva is an extracellular fluid produced and secreted by salivary glands in the mouth.
- Daily secretion of saliva ranges between **800 and 1500 ml.**
- Saliva has a pH between 6.0 and 7.0.
- During normal awake conditions saliva is secreted at 0.5ml /min.
- Specific gravity: It ranges between 1.002 and 1.012
- Tonicity: Saliva is hypotonic to plasma.

Composition of Saliva

- Saliva contains two major types of protein secretion:
 - 1) Serous (watery) secretion
 - Contains **ptyalin (an α-amylase)** enzyme for digesting starches
 - 2) Mucus secretion
 - Contains mucin viscous, glycoprotein rich
 - Lubrication and surface protective purposes

Salivary Glands

• In humans, the saliva is secreted by **3 pairs of major salivary glands** and some **minor salivary glands**.

1. Major salivary glands:

- 1. Parotid glands
- 2. Submaxillary or submandibular glands
- 3. Sublingual glands

2. Minor salivary glands:

- 1. Lingual Mucus Glands
- 2. Lingual Serous Glands
- 3. Buccal Glands
- 4. Labial Glands
- 5. Palatal Glands

Gland	Duct
Parotid gland	Stensen duct
Submaxillary gland	Wharton duct
Sublingual gland	Ducts of Rivinus/Bartholin duct

Parotid Glands

- Largest Salivary Glands
- Located at the side of the face, below and in front of the ear
- Each gland weighs approximately **20 to 30 grams in adults**

Secretions and Ducts

- Stensen Duct
 - Length: 35 mm to 40 mm
 - Empties secretions into the **oral cavity**
 - Opens inside the cheek, opposite the upper second molar

Submaxillary or submandibular glands

Location

- Situated in the **submaxillary triangle, medial to the mandible**
- Each gland weighs approximately 8 to 10 grams

Secretions and Ducts

- Wharton Duct
 - Length: About 40 mm
 - Empties saliva into the oral cavity
 - Opens at the side of the frenulum of the tongue
 - Small opening on the summit of papilla called **caruncula sublingualis**

Sublingual glands

- Smallest Salivary Glands
- Located in the mucosa at the floor of the mouth
- Each gland weighs approximately **2 to 3 grams**

Secretions and Ducts

- 1. Ducts of Rivinus
 - 5 to 15 small ducts
 - Open on small papillae beneath the tongue
- 2. Bartholin Duct
 - Larger duct draining the **anterior part of the gland**
 - Opens on caruncula sublingualis near the opening of the submaxillary duct

Minor salivary glands

- 1. Lingual Mucus Glands
 - Located in **posterior 1-3rd of the tongue**, behind circumvallate papillae
 - At the tip and margins of the tongue
- 2. Lingual Serous Glands
 - Located near circumvallate and filiform papillae
- 3. Buccal Glands
 - Located b/w the mucous membrane and buccinator muscle
 - 4-5 larger glands situated outside the buccinator, around the terminal part of the parotid duct
- 4. Labial Glands
 - Located **beneath the mucous membrane** around the **orifice of the mouth**
- 5. Palatal Glands
 - Found **beneath the mucus membrane** of the **soft palate**

Classification of Salivary Glands

- 1. Serous Glands
 - **Composition** mainly serous cells
 - Secretion Thin and watery saliva
 - Examples
 - 1. Parotid glands
 - 2. Lingual serous glands

- 3. Mixed Glands
 - **Composition** Both serous and mucus cells
 - Secretion Combination of thin and viscous saliva
 - Examples
 - 1. Submandibular glands
 - 2. Sublingual glands
 - 3. Labial glands

- 2. Mucus Glands
 - **Composition** mainly mucus cells
 - Secretion Thick, viscous saliva with high mucin content
 - Examples
 - 1. Lingual mucus glands
 - 2. Buccal glands
 - 3. Palatal glands

Structure and Duct System of Salivary Glands

Acini/Alveoli Formation

- Salivary glands are composed of acini (or alveoli).
- Each acinus consists of a group of cells surrounding a central globular cavity.

Duct System

- Central cavity of each acinus is continuous with the lumen of the duct
- Intercalated Ducts: Fine ducts draining each acinus
- Intralobular Ducts: Formed by the union of intercalated ducts
- Interlobular Ducts: Created by joining few intralobular ducts
- Main Duct: Formed by the union of interlobular ducts
- Structure resembling a bunch of grapes **racemose type.**

Functions of Saliva

- 1. Preparation of Food for Swallowing
 - Moistens and dissolves food
 - Facilitates chewing and bolus formation
 - Mucin lubricates the bolus for swallowing

2. Appreciation of Taste

- Saliva dissolves solid food substances for taste bud stimulation
- Taste recognition facilitated by dissolved substances

3. Digestive Function

- Salivary Amylase: Digests carbohydrates, converting starch into dextrin and maltose
- Maltase: Converts maltose into glucose
- Lingual Lipase: Digests milk fats, hydrolyzing triglycerides into fatty acids and diacylglycerol

Functions of Saliva

- 4. Cleansing and Protective Functions
 - Rinses mouth and teeth, removing debris and foreign particles
 - Enzymes and proteins in saliva kill bacteria and neutralize toxins
 - Stimulates enamel formation, protects teeth
 - Mucin lubricates and protects the mucus membrane
- 5. Role in Speech
 - Moistens and lubricates **soft parts of the mouth and lips**

6. Excretory Function

- Excretes various substances, including certain viruses and toxins
- Can reflect pathological conditions by excreting abnormal substances (glucose, urea, calcium)

7. Regulation of Water Balance

• Decreased saliva secretion **induces thirst**, restoring body water content

Regulation of Salivary Secretion

• Salivary secretion is regulated by the **autonomic nervous system**.

Nerve Supply to Salivary Glands

- 1. Parasympathetic Fibers
 - i. Submandibular and Sublingual Glands
 - Originate from the **superior salivatory nucleus in the pons**
 - Pathway: Superior salivatory nucleus → chorda tympani (branch of facial nerve) → geniculate ganglion → submaxillary ganglion
 - ii. Parotid Gland
 - Originate from the inferior salivatory nucleus in the medulla oblongata
 - Pathway: Inferior salivatory nucleus → glossopharyngeal nerve → tympanic plexus → lesser petrosal nerve → otic ganglion

Parasympathetic Nerve Supply to Salivary Glands

Function of Parasympathetic Fibers

- Stimulation of **parasympathetic fibers causes:**
 - Secretion of saliva rich in water
 - Activation of acinar cells and dilation of salivary gland blood vessels
 - Resulting saliva has fewer organic constituents
 - Neurotransmitter involved: Acetylcholine

Regulation of Salivary Secretion

2. Sympathetic Fibers

Pathway:

- Sympathetic preganglionic fibers to salivary glands originate from lateral horns of 1st and 2nd segment of thoracic segment of spinal cord.
- The fibers leave the cord through anterior nerve roots and end in the superior cervical ganglion of the sympathetic chain.
- **Postganglionic fibers** arise from this ganglion and distributed to the salivary glands along the nerve plexus, around the arteries supplying the glands.

Functions of Sympathetic fibers

- Stimulation of sympathetic fibers causes:
 - Secretion of saliva with less water, resulting in **viscous saliva**
 - Resulting saliva is rich in organic substance (mucin)
 - **Constriction of blood vessels** supplying the salivary glands
 - Neurotransmitter involved: Noradrenaline

ThankYou