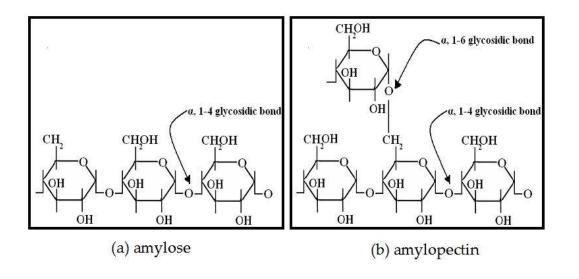
Digestion and Absorption in the Gastrointestinal Tract

Khushal Khan KMU-IPMS

- The food we eat contains the following major macronutrients;
 - Carbohydrates
 - Proteins
 - Lipids



Digestion and Absorption of Carbohydrates

Digestion of Carbohydrates

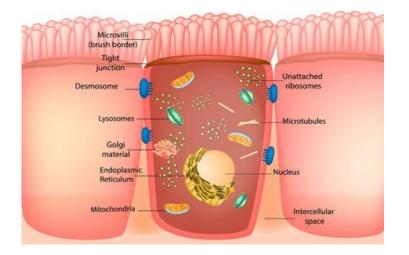
- Food rich in carbohydrates (e.g. bread, pizza, fruits, vegetables etc.) contains carbohydrate molecules:
 - Cellulose not absorbable b/c humans lack enzyme cellulase.
 - Amylose (linear structure)
 - Amylopectin (branched structure)
- The digestion of carbohydrates begins in the mouth and stomach.

Salivary Amylase

• Saliva contains enzyme salivary α- amylase (ptyalin).

Starch (amylopectin, amylose) \rightarrow Maltose + Galactose + Maltotriose + α – limit dextrins

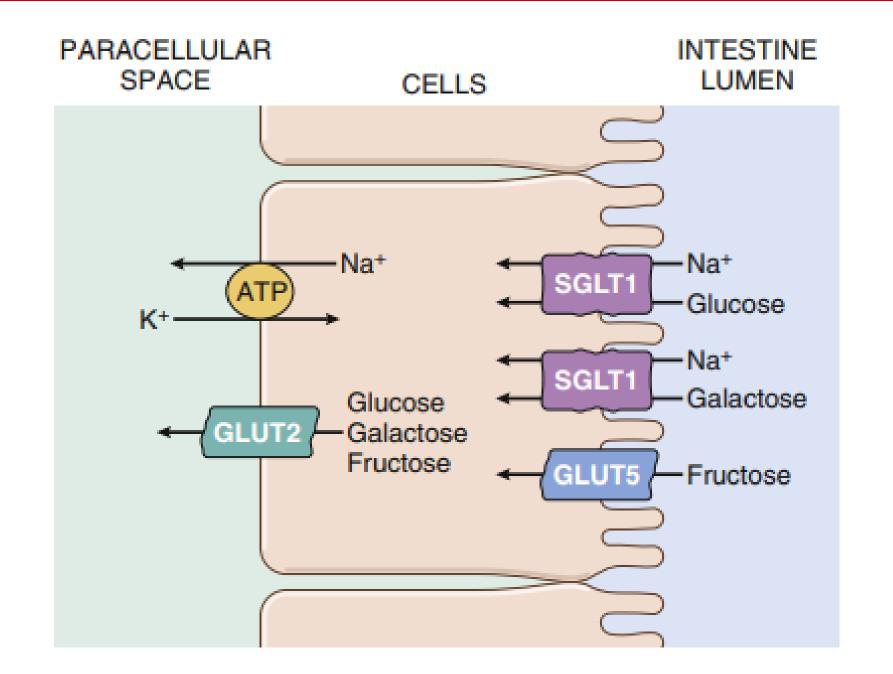
Polysaccharides \rightarrow **disaccharides** + **oligosaccharides**


• Less than 5% of the starch content of a meal is hydrolyzed before swallowing.

Pancreatic Amylase

- Pancreatic secretion, like saliva, contains a large quantity of **a-amylase**.
- The function of pancreatic a-amylase is almost identical to that of the a-amylase in saliva.
- It is **several times powerful** than salivary a-amylase.
- When the chyme empties into the duodenum and mixes with pancreatic juice, virtually all the starches are digested.

Brush Border Enzymes


- Microvilli brush border enzymes present on the epithelial surface of microvilli. They are;
 - 1. Lactase (lactose \rightarrow glucose + galactose)
 - 2. Maltase also called *glucoamylase* (maltose, maltotriose \rightarrow glucose + glucose)
 - 3. Sucrase (sucrose \rightarrow glucose + fructose)
 - 4. Isomaltase works on α 1,6 glycosidic bonds (α -limit dextrin \rightarrow glucose + glucose)
- Glucose represents more than 80% of the final products of carbohydrate digestion.

Absorption of Carbohydrates

- 1. GLUT-5 (glucose transporter) facilitates the diffusion of fructose from intestinal lumen into the enterocyte.
- 2. Na⁺/K⁺ ATPase (pumps 3 Na⁺ out, 2K⁺ into the enterocyte)
 - This causes \uparrow conc. of Na+ in the lumen and \downarrow conc. Of Na+ inside the enterocyte.
 - Na+ carries glucose and galactose along itself to the enterocyte through SGLT.
- 3. SGLT-1 (sodium-glucose co-transporter) transports glucose and galactose into the enterocyte.
- 4. GLUT-2 transports glucose, galactose, fructose from the enterocyte to the paracellular space and then into the intestinal capillaries.

Intestinal capillaries \rightarrow Hepatic portal vein \rightarrow Liver

Digestion and Absorption of **Proteins**

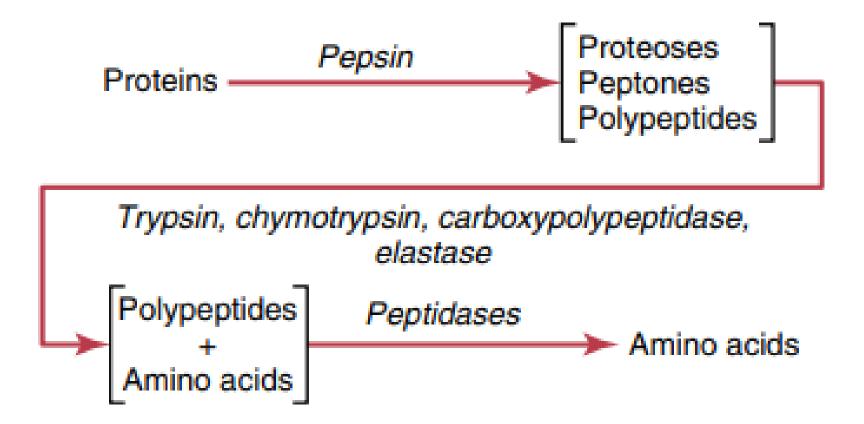
Stomach

- Digestion of proteins starts in the stomach.
- Digestion of proteins takes place by hydrolysis of polypeptides.
- Large polypeptides \rightarrow Amino acids (by hydrolysis reaction)
- In stomach;
- Chief cells secrete pepsinogen (inactive form)
- Parietal cells secrete HCl
 - Helps decrease the pH i.e. **1.8 3.5**
 - Stimulates conversion of pepsinogen into pepsin (active form)
- Large polypeptides → proteoses, peptones, multiple small polypeptides (**by pepsin**)

Pancreatic Proteolytic Enzymes

- Proteoses, peptones, large polypeptides → dipeptides, tripeptides (**pancreatic proteases**)
- CCK stimulates acinar cells of pancreases, and it triggers the release of digestive enzymes (proteases) from the pancreas and the digestive juice is released into the duodenum.
- Pancreatic Proteases;
 - Trypsinogen (inactive) activated to trypsin by enterokinase (by brush border enzymes)
 - **Chymotrypsinogen** (inactive) activated to **chymotrypsin** by trypsin.
 - Procarboxypeptidases (inactive) activated to carboxypeptidase by trypsin.
 - Proelastase (inactive) activated to elastase by trypsin.
- Polypeptides \rightarrow smaller polypeptides i.e. dipeptides, tripeptides (trypsin and chymotrypsin)
- Carboxypeptidase act on the carboxyl (COO⁻) end of the polypeptide.
- Elastase digests the elastin fibers that are present in meat.

Absorption of Proteins

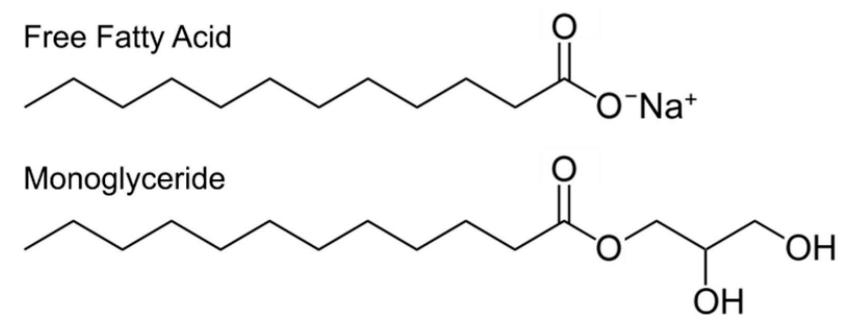

- Enterocyte cytoplasmic extensions (microvilli on its surface contains brush border enzymes)
- Brush border enzymes
 - 1. Aminopolypeptidases (cleave polypeptides at amino end NH₂ and convert them into three A.A)
 - 2. Di-peptidases (splits dipeptides into individual peptidase)
- Na⁺-H⁺ antiporter moves H+ out of the cell and Na+ inside the cell.
- Dipeptides enters the enterocyte by symport of **H**+ and dipeptides.
- Tripeptides enters the enterocyte by symport of **H**+ and tripeptides.
- Amino acids enters the enterocyte by secondary active transport of Na+ and A.A.
 - The electrochemical gradient is provided by Na+/K+ ATPase pump.

• Once inside the enterocyte, dipeptides and tripeptides are splitted into individual amino acids by **peptidase.**

Dipeptides → **free amino acids (peptidase)**

Tripeptides → **free amino acids (peptidase)**

• These free amino acids are then transported into the blood.



Digestion and Absorption of Lipids

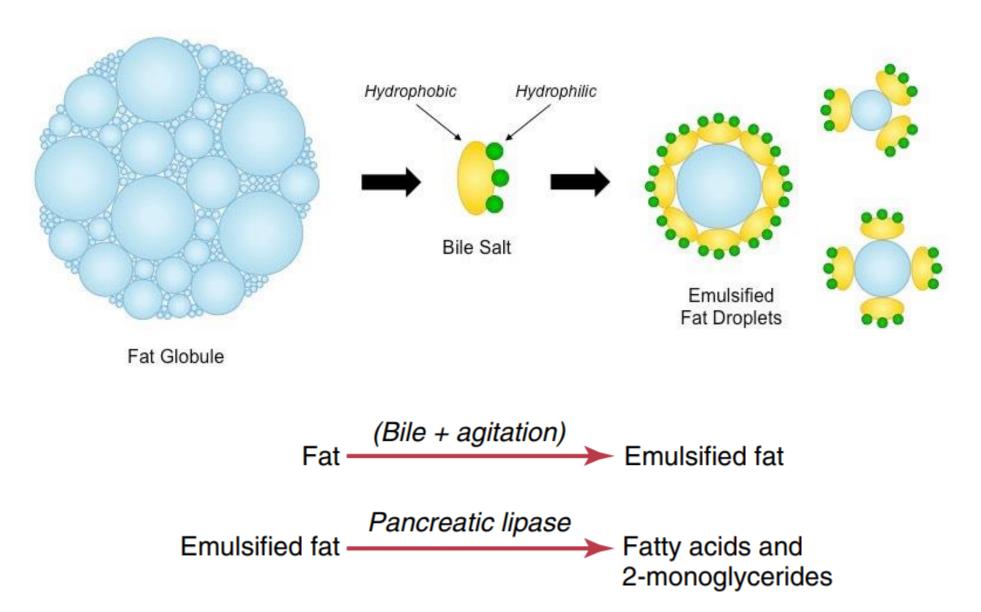
Digestion of Lipids

- Lipid polymers broken down into monomers.
 - Triglycerides → Fatty acids + monoacetylglycerol
 - Cholesterol ester \rightarrow cholesterol
 - Phospholipids → glycerol + fatty acids

Oral Cavity

- Sublingual and parotid salivary glands secrete **lingual lipase**.
- Partial digestion of lipids.
- Triglycerides (glycerol) → mono acetyl glycerol (MAG) + free fatty acids (breakdown ester bonds)

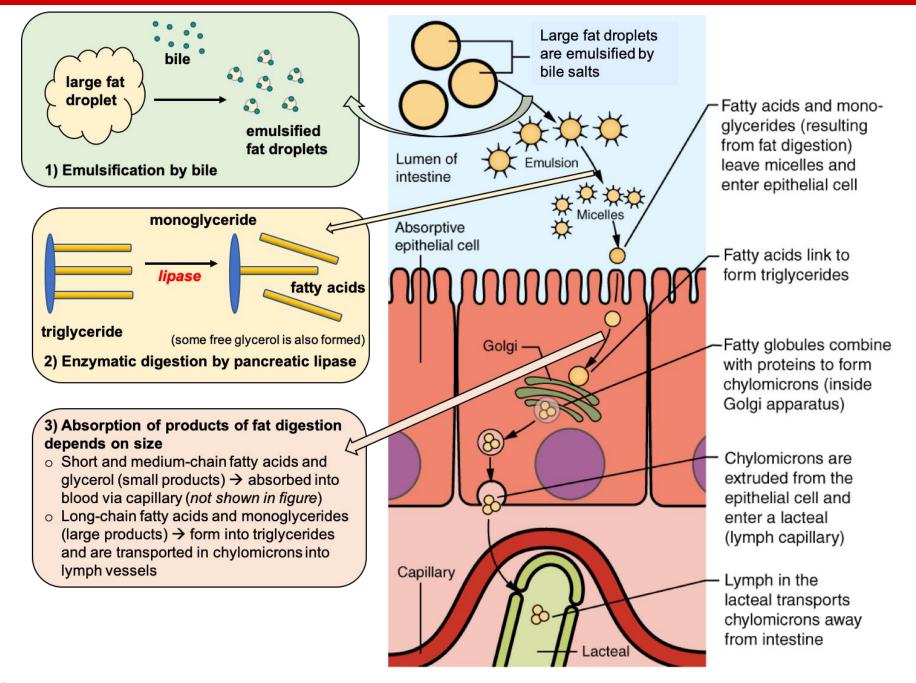
Stomach


- Chief cells secrete gastric lipase (similar to lingual lipase)
- Triglycerides (glycerol) → mono acetyl glycerol (MAG) + free fatty acids (breakdown ester bonds)

Small Intestine (Duodenum)

- Bile emulsification agent
- Emulsification breakdown of large fat globule into small fat droplets
- Bile
 - Phospholipids lecithin
 - Bile salts cholic acid, chenodeoxycholic acid (derivatives of cholesterol)

Pancreatic lipase


Pancreatic lipase with colipase – breakdown triglycerides in fat droplets into → mono acetyl glycerol (MAG) + free fatty acids

Absorption of Lipids

• Micelles

- Central fat globule (MAG + free FA)
- Bile salts projecting outward covering the surface of micelles
- Bile salt micelles carry **monoglycerides** + **free FA** to the **brush borders of the intestinal epithelial cells.**
- Free fatty acids and monoglycerides leave micelle and enter enterocytes.
- In enterocytes, free fatty acids **converted into triglycerides** and **combine with proteins** to form **chylomicrons (in Golgi complex)**
- Chylomicrons through exocytosis leave the cell and enter lacteals.
- Lacteals carry chylomicrons through lymph fluid to the target organs (e.g. mucles, adipose tissue)

Thank You