

Gastrointestinal Motility

By: Khushal Khan KMU-IPMS

Gastrointestinal (GI) motility

- GI motility refers to the contraction and relaxation of the muscles in the digestive tract that move food and waste material through the system.
- There are several types of GI motility that play different roles in the digestive process.
- Some of the **main types** are:
 - 1. Swallowing
 - 2. Peristalsis
 - 3. Segmentation
 - 4. Mass movement
 - 5. Defecation

Gastrointestinal Smooth Muscle

- Composed of **smooth muscle fibers**
- Arranged in **parallel bundles**
- Length: 200-500 micrometers
- **Diameter:** 2-10 micrometers

Function

- Responsible for involuntary contractions
- Propel food and waste through the digestive system

Control

- Autonomic nervous system
 - Sympathetic nerves: inhibit contractions
 - Parasympathetic nerves: stimulate contractions

Cross section of the intestine showing the smooth muscle layers (one circular and the other longitudinal) running at right angles to each other.

Circular layer of smooth muscle (shows longitudinal views of smooth muscle fibers)

Gastrointestinal Smooth Muscle

- Smooth muscles in the GI tract are **arranged in two layers:**
- 1. Outer Longitudinal muscle layer fibers arranged longitudinally
 - Runs parallel to the length of the GI tract
 - Responsible for shortening and lengthening the tube
 - Helps to move food along the tract
- 2. Inner Circular muscle layer fibers arranged in circular manner
 - Runs perpendicular to the longitudinal layer
 - Responsible for constricting the lumen (inner space) of the GI tract
 - This helps to mix and break down food
 - Prevent backflow of digestive material

Interstitial Cells of Cajal (ICC)

- Specialized cells found throughout the GIT
- Key role in **regulating smooth muscle contractions**
- Located in muscle layers, abundant near myenteric plexus
- Act as pacemakers, generating spontaneous electrical slow waves
- Electrical slow waves trigger smooth muscle contractions
- Regulate neurotransmission in the GI tract
- Involved in release of:
 - Acetylcholine (stimulates contractions)
 - Nitric oxide (inhibits contractions)

Function:

- Proper functioning of GI tract
- Rhythmic smooth muscle contractions
- Modulating neurotransmission in GI wall

Gap Junctions

• Specialized channels for direct cell-to-cell communication – ions and small molecules exchange

Function in Smooth Muscles

- Allow rapid travel of electrical signals between cells
- Enable coordinated contraction of multiple cells

Role in GI Tract

- Electrical slow waves generated by ICC
- Spread through gap junctions to smooth muscle cells
- Lead to coordinated contractions (syncytium)
- Propel food and waste through the digestive system

Electrical Activity

Excitation of GI Smooth Muscle

- Excited by continuous slow, intrinsic electrical activity
- Two types of electrical waves:

1. Slow Waves

• Rhythmic, spontaneous fluctuations in ICC membrane potential

2. Spike Potentials

- Rapid, transient changes in membrane potential
- Occur in response to ICC membrane depolarization

Electrical Activity

Slow Waves

- Most GI contractions occur rhythmically brought by slow waves.
- These waves **are not action potentials**.
- They are **slow**, wave like changes in the resting membrane potential.
- Intensity: 5 and 15 mv
- Frequency: 3 to 12/min

Spike Potentials

- The spike potentials **are true action potentials.**
- They occur automatically when the RMP (-50 and -60 mv) of the GI smooth muscle becomes more positive than about -40 mv.
- Frequency: 1-10 spikes / sec
- AP Duration: 10-20 ms
- In GI smooth muscle fibers, the channels responsible for the action potentials are : calcium-sodium channels.

Factors

↑ Excitability of Membrane

- Stretching of the muscle
- Stimulation by **acetylcholine** released from parasympathetic nerves
- Stimulation by several specific gastrointestinal hormones

↓ Excitability of Membrane

- Norepinephrine
- Epinephrine
- Stimulation of the **sympathetic nerves** that secrete norepinephrine

Mechanism of Smooth Muscle Contraction

1. Calcium entry:

- SM contraction initiated when Ca2+ enter SM cell from ECF or sarcoplasmic reticulum.
- Ca2+ entry triggered by stimuli such as neurotransmitters, hormones, mechanical stretch.

2. Calcium binding to calmodulin:

- Ca2+ that enter the SM cell bind to a protein called calmodulin.
- This binding activates an **enzyme** called **myosin light chain kinase** (MLCK).
- 3. Activation of myosin light chain kinase:
 - Activated **MLCK phosphorylates** the **myosin light chains of the myosin filaments** in the smooth muscle cell.

- Cross-bridge cycling:
 - Phosphorylation of the myosin light chains **causes the myosin heads to bind to actin filaments in the smooth muscle cell, forming cross-bridges.**
 - The myosin heads then undergo **a conformational change**, pulling the actin filaments towards the center of the sarcomere and causing contraction of the smooth muscle cell.

• Calcium removal:

- Once the calcium ions have triggered smooth muscle contraction, they need to be removed from the smooth muscle cell to allow for relaxation.
- Calcium removal is achieved by a variety of mechanisms, including calcium uptake into the sarcoplasmic reticulum and extrusion from the cell via calcium pumps.

• Dephosphorylation of myosin light chains:

- As the calcium ions are removed from the smooth muscle cell, **the myosin light chain kinase is deactivated**, leading to **dephosphorylation of the myosin light chains**.
- This causes the **myosin heads to release from the actin filaments** and allows for **relaxation of the smooth muscle cell.**

Mechanism of smooth muscle contraction

Types of Contractions in GIT

Phasic Contractions

- Rhythmic, cyclical SM contractions
- Occur in response to food or other stimuli in the GI tract
- Propel food and waste through the GI system
- Regulated by ICC-generated electrical slow waves

Tonic Contractions

- Sustained SM contractions over a prolonged period
- Maintain tone and tension of the GI wall
- Essential for proper functioning of GI sphincters
 - Lower oesophageal sphincter
 - Pyloric sphincter

Phasic Contractions

Peristalsis

- Coordinated contraction and relaxation of smooth muscle
- Propels food and waste through the GI tract
- Involves wave-like contractions along the GI tract
- Relaxation phase follows each contraction, allowing forward movement of contents

Segmentation

- Occurs in the small intestine
- Localized smooth muscle contractions
- Mix and knead intestinal contents
- Aid in digestion and nutrient absorption

Hormonal Control of Gastrointestinal Motility

The gastrointestinal hormones are released into the **portal circulation** and **exert physiological actions on target cells** with specific receptors for the hormone.

Hormone	Stimuli for Secretion	Site of Secretion	Actions
Gastrin	Protein Distention Nervous (Acid inhibits release)	G cells of the antrum, duodenum, and jejunum	Stimulates Gastric acid secretion Mucosal growth
Cholecystokinin	Protein Fat Acid	I cells of the duodenum, jejunum, and ileum	Stimulates Pancreatic enzyme secretion Pancreatic bicarbonate secretion Gallbladder contraction Growth of exocrine pancreas Inhibits Gastric emptying
Secretin	Acid Fat	S cells of the duodenum, jejunum, and ileum	Stimulates Pepsin secretion Pancreatic bicarbonate secretion Biliary bicarbonate secretion Growth of exocrine pancreas Inhibits Gastrin release and gastric acid secretion
Glucose-dependent insulinotropic peptide (also called gastric inhibitory peptide)	Protein Fat Carbohydrate	K cells of the duodenum and jejunum	Stimulates Insulin release Inhibits Gastric acid secretion
Motilin	Fat Acid Nervous	M cells of the duodenum and jejunum	Stimulates Gastric motility Intestinal motility

Basic movement

- 1. **Mixing movement** Keep the intestinal contents thoroughly mixed at all times.
- Propulsive movement (peristalsis) Food move forward along the tract at an appropriate rate to accommodate digestion and absorption.

Movements of different parts of GIT:

1. Oral cavity : i) Mastication

ii) Deglutition

- 2. Pharynx: i) Deglutition
- 3. Esophagus : i) Deglutition

ii) Peristalsis

Movements of different parts of GIT: 4. **Stomach**– i) Mixing movement ii) Peristalsis iii)Stomach emptying iv) Hunger contraction 5. **Small intestine**— i) Segmentation ii) peristalsis 6. Large intestine – i) Haustration ii) Mass movement 7. Rectum and anal canal-- Defecation

Motility in Esophagus

Peristalsis (Propulsion):

- Primary function of esophagus
- Alternating wave of contraction and relaxation
- Moves food and fluids along the GI tract

Esophagus:

- Contraction behind bolus, relaxation ahead
- Distension activates stretch receptors

Myenteric Plexus (Auerbach's plexus) between muscular layers

During peristalsis:

- Longitudinal muscular layer contracts, widening esophagus lumen
- Circular muscular layer contracts, narrowing esophagus lumen

Motility in Stomach

Functions of the Stomach:

- 1. Reservoir for food storage
- 2. Mixing (churning) of food
- 3. Emptying of the stomach

Physiological Parts of the Stomach:

- **1. Orad Portion:**
 - Includes fundus and first 2-3rd part of the body
 - Role in food storage
- 2. Caudad Portion:
 - Comprises the remainder of the body and antrum
 - Role in food churning and emptying

Storage

• Can hold food from **0.8 to 1.5 liters.**

Cephalic Phase:

- Triggered by sight, thought, smell, and taste.
- Vagus nerve stimulates neurons near the fundus to release VIP (vasoactive intestinal peptide) and NO (nitric oxide).
- Causes the orad portion to relax (receptive relaxation) before food

Gastric Accommodation:

- Entry of bolus increases stomach volume, causing wall distension.
- Triggers a local reflex (vagovagal reflex) and releases NO and VIP.
- Promotes further relaxation (adaptive relaxation) to accommodate food.

Receptive and Adaptive Relaxation:

- Both play vital roles in **gastric accommodation.**
- Allow intragastric volume to increase with food intake while maintaining stable intragastric pressure until capacity is reached.

Mixing (Churning)

Mid-Body of the Stomach:

• Contains Pacemaker cells (interstitial cells of Cajal) that generate action potentials, causing **smooth muscle contraction.**

Contraction Pattern:

- Contraction begins in the **upper part of the body**.
- Intensity and force of contraction increase as they move towards the pylorus.
- These contractions create **potential-driven constrictor rings**, which force antral contents toward the pylorus under increasing pressure.

Mixing Mechanism:

- Each peristaltic wave **passes down the antral wall,** digging deeply into the antral contents.
- The **pylorus opening is small,** allowing only a few milliliters or less of contents to be expelled into the duodenum per wave.
- As the peristaltic wave approaches, **the pyloric muscle often contracts**, **further impeding emptying**.
- Most antral contents are **squeezed upstream through the peristaltic ring towards the body of the stomach,** not through the pylorus.

Retropulsion:

- This upstream squeezing action, combined with the moving peristaltic constrictive ring, is termed "**retropulsion.**"
- **Retropulsion is a crucial mixing mechanism,** ensuring thorough mixing of stomach contents for effective digestion.

Emptying

Intense Peristaltic Contractions:

- Occur in the stomach antrum, promoting stomach emptying.
- About **20% of contractions become intense,** beginning in midstomach and spreading through the caudad stomach.
- These contractions are **strong, tight, ring-like constrictions** capable of causing stomach emptying.
- Generate pressures of **50 to 70 cm of water**, about six times as powerful as usual mixing peristaltic waves.

Pyloric Pump:

- When pyloric tone is normal, each strong peristaltic wave forces up to several milliliters of chyme into the duodenum.
- Besides mixing stomach contents, these peristaltic waves **also create a pumping action** called the **"pyloric pump,"** which facilitates the movement of chyme into the small intestine.

Regulation of Stomach Emptying

1. Increased food volume in the stomach promotes increased emptying.

2. Gastrin:

- Gastrin causes the secretion of highly acidic gastric juice by the stomach glands.
- Gastrin also has mild to moderate stimulatory effects on motor functions in the body of the stomach, enhancing the activity of the pyloric pump.
- Thus, gastrin promotes stomach emptying.

3. Duodenum Enterogastric Nervous Reflexes:

• These reflexes inhibit stomach emptying, regulating the rate at which chyme enters the duodenum.

Inhibition of Stomach Emptying

Duodenal Reflexes:

- When food enters the duodenum, multiple nervous reflexes are initiated from the duodenal wall.
- These reflexes pass back to the stomach **to slow or stop stomach emptying if the volume of chyme in the duodenum becomes too high.**
- These parallel reflexes have two main effects:
 - **1.** Strongly inhibit the "pyloric pump" propulsive contractions.
 - 2. Increase the tone of the pyloric sphincter.

Factors

- **1.** Distention of the Duodenum:
 - Increased volume stretches the duodenal wall.

2. Irritation of the Duodenal Mucosa:

- Presence of irritants triggers inhibitory reflexes.
- **3. Acidity of Duodenal Chyme:**
 - High acidity levels initiate reflexes to slow emptying.
- 4. Osmolality of Chyme:
 - Changes in osmolality signal the need to regulate emptying.
- 5. Breakdown Products of Proteins and Fats:
 - Presence of these products also triggers inhibitory reflexes to manage the digestive process.

Motility in Small Intestine

Mixing Contractions (Segmentation Contractions)

- Sluggish, short-lived contractions
- Primarily function as mixing of chyme with **bile**, **pancreatic & intestinal enzymes**
- Antegrade and retrograde moments Mixing
- Increases the contact time with chyme and mucosal surface **absorption**

Propulsive Moments (Peristalsis)

- It is the alternative wave of contraction and relaxation
- Move the chyme from small intestine toward the long intestine

Segmentation

- Chyme causes intestinal distension, stretching the intestinal wall.
- This induces localized concentric contractions lasting less than a minute.

Segmentation:

- These contractions cause segmentation, dividing the intestine into spaced segments, resembling a chain of sausages.
- When one set of segmentation contractions relaxes, a new set begins at new points between the previous contractions.
- This results in chopping of chyme 2-3 times per minute.
- Frequency: Occurs at a rate of about 12 contractions per minute.

B. Segmentation contractions (small and large intestines)

Peristalsis

- Chyme is propelled through the small intestine by peristaltic waves.
- These waves can occur in any part of the small intestine and move toward the anus.
- Velocity ranges from 0.5 to 2.0 cm/sec.
- Faster in the proximal intestine and slower in the terminal intestine.

Characteristics of Peristaltic Waves:

- Normally weak and often die out after traveling 3 to 5 cm.
- Rarely travel farther than 10 cm, resulting in very slow forward movement of the chyme.
- Net movement averages only 1 cm/min.
- It takes approximately 3 to 5 hours for chyme to pass from the pylorus to the ileocecal valve.

A. Peristalsis contractions (esophagus, stomach, small intesting)

Control of Peristalsis

Stimulation

Inhibition

- 1. Entry of chyme into the duodenum, causing stretch of the duodenal wall. Secretin
 - Glucagon

2. Neuronal - Gastroenteric reflex

- Initiated by the distention of the stomach.
- Conducted principally through the myenteric plexus from the stomach along the wall of the small intestine.
- Causes stretching of the duodenal wall upon chyme entry.

3. Hormonal

• Gastrin, CCK, insulin, motilin, serotonin

Motility in Large Intestine

- The principal **functions of the colon are:**
 - 1. Absorption of water and electrolytes from the chyme to form solid feces.
 - 2. Storage of fecal matter until it can be expelled.
- Colon
 - Proximal half absorption
 - Distal half storage
- Movements in colon are sluggish. Divided into:
 - 1. Mixing movements Haustrations
 - 2. **Propulsive movements** Mass Movements

Taenia Coli:

- Bands of smooth muscle running the length of the large intestine.
- Shorter than the intestine, causing the colon to form sac-like pouches called haustra.

Haustra:

• Small pouches formed by **sacculation**, giving the colon its segmented appearance.

Mixing Movements – Haustral Contractions

- Slow, segmenting movements that mix chyme.
- Chyme fills a haustrum, causing **distension**.
- The smooth muscle layer (taenia coli) contracts, creating constriction points.
- These contractions bring faecal residue into close contact with the mucosal wall.
- This process aids in the absorption of electrolytes (e.g., Na+, Cl-), water, and B vitamins.

Propulsive Movements "Mass Movements"

- Slow, powerful contractions that move undigested waste to the rectum for defecation via the anus.
- Much stronger and sustained peristaltic contractions.
- **3–4** times a day.
- Mainly occurs in the **transverse**, **descending**, and **sigmoid colons**.
- Produced by circular layer (smooth muscle) contractions.

Thank You